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PREFACE

The present volumes form the proceedings of the Third International Conference
on Ferroelectric Liquid Crystals. held in Boulder. Colorado. USA June 23-28.
1991. These volumes continue the publication of this conference series. the pro-
ceedings of the first conference (1987) held at Bordeaux/Arcachon appearing in
Volumes 84 and 85. and the proceedings of the second conference (1989) held at
Goteborg appearing in Volumes 113 and 114

As for the two preceding conferences. FLC-91 provided a broad forum for the
exchange of information on FLCs. with most of the groups working in the ticld
well represented. Exciting developments were reported in all FLC areas. The world-
wide effort at developing new FLC materials continues apace. with the report of
an FLC material possessing a spontancous polarization nearly equal to the sum of
all transverse molecular dipoles. and new thrusts in polvmer FLCs and FLCs for
electronic nonlinear optical applications. The conference saw many new devel-
opments in FLC basic and device physics. including the use of dielectric spectros-
copy as a tool for studying the molecular origins of the polarization in FLCs.
Particularly exciting were the FLC device developments with the emergence of
sophisticated FLC devices for opto-electronic computing. display. and other light
control applications. including a demonstration of a flexible polvmer FLC display!

Due to the intense interest in FLCs in Japan and the large number of Japanese
FLC workers. the Fourth International Conference on Ferroelectric Liquid Crystals
will be held in Japan in the summer of 1993. organized by Professor A. Fukuda
of Tokyo Institute of Technology.

In preparing this proceedings it was the express intention of the Guest Editors
to be as timely as possible in publishing the papers of those who submitted and/or
revised manuscripts describing their most recent work in time to meet the neces-
sarily tight deadline for 1991 publication. These volumes should thus provide a
view of the state of FLC science as of the summer of 1991. It should be noted that
some papers submitted for the proceedings for one reason or another could not
be made ready in time for inclusion in these volumes. Such papers will be published
in future issues of Ferroelectrics either as type-set full papers or as letters, with a
footnote indicating that they are part of the proceedings of FLC-91.

The Guest Editors would like to thank the sponsors, administrative assistants.
and especially all of the scientists who made the meeting such a great success.

Boulder. Colorado, USA. September 1991

Noel A. Clark
David M. Walba
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FERROELECTRIC LIQUID CRYSTAL DISPLAYS
FOR TELEVISION APPLICATION

WILBERT J. A.M. HARTMANN
Philips Research Laboratorics, Eindhoven, The Netherlands

Abstract The surface-stabilized ferroclectric liquid crystal (SSFLC) effect is
a serious candidate for application in television displays, due to its high
switching speed and viewing angle independence.  For tie television
application, however, several severe requirements must be fulfilled, of which
the demand for a large amount of gray levels is very crucial in view of the
bistable character of the SSFLC cffect. A review and discussion of the
different approaches to realize gradation in SSFLC structures is given. The
so-called dither techniques vield discrete gray levels but become complex
when many levels are required. Analoguc gradation mcthods arc based on
in-pixel domain switching but require an accurate control of the multidomain
structures. Active-matrix addressing of the SSFLC cffect cnhances the
reproducibility of the multidomain gray levels via the charge-control process,
resulting in a fast-switching, vicwing-anglc-indecpendent videco display.
Passive-matrix addressing (multiplexing) takes advantage of the bistability
and the switching <peed of the SSFLC cffect. Onc approach to control the
multidomain gray levels in passive-matrix addressing is extensively dealt
with; the “texturc-method”. The mechanism, the addressing scheme, the
obtainable contrast in the different textures and the applicability of various
FLC mixtures are discussed. The resulting performance of lest displays,
operating at video ratc and possessing full gradation, is cvaluaicd. Finally,
some indications will be given of the remaining problems, which necd further
improvement belore FLC displays can be successfully applicd for television.

INTRODUCTION

Since Meyer ct al.! first reported the existence of ferroclectricity in liquid crystals
in 1975, many researchers have committed themselves to this phenomenon. In
1980, Clark and Lagcrwall described the “Surface-Stabilized Ferrcelectric Liquid
Crystal” (SSFLC) structure?, which is characterized by a high switching speed and
a non-volatile bistability. Since then, other ferroclectric liquid crystal (FLC)
cffects like transicnt scatter mode (TSM)', deformed helix ferrociectric (DHF)Y,
short pitch ferroelectric (SPF)’ and electroclinic (SmA*)S have been reported, but
will not be discussed in this rcview article because, with respect to display
application, they appear to be in a less-developed stage than the SSFFLC effect.

[355)/1
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FIGURE I The SSFLC cfffect

The SSFLC effect is based on a smectic C laver configuration perpendicular
to the boundary glass plates, which possess a planar-oricnting alignment layer and
a small distance towards ecach other. In this way hclix formation is avoided and
two bistable states cxist, which possess a uniform director pattern and an UP or
DOWN ferroclectric polarization (sce Figurc 1). A cell with ~2pm thickness
between crossed polarizers will exhibit a black and a birefringent bright state,
which is perceived as colourless white. The advantages of the SSFLC effect are
the very high switching speed ( < 100us at room temperaturce). the vicwing angle
independence, the non-volatile bistable memory and the potential of heing applied
in passive-matrix-addressed (also called multiplexed) liquid crystal displays. In
contrast to nematic LCDs, the number of lines of a passive-matrix-addressed
SSFLC display is theorctically unlimited. Since 1988, scveral high-resolution
displays (up to 2000 lines) ha' - heen demonstrated.™ Also video-rate (64us per
line) is possible.® The charact  ic handicaps of the SSFLC structure are the
required cell thickness (<2um) . the fact that the materials and the SSFLC cell
technology strongly deviate from 1t of the present L.CD products, which arc
based on the supertwist (STN) or the twisted nematic (TN) cffect.

When considering the application of the SSFLC structure for TV displays. it
will be necessary to compete with thc presently-available displays like the
active-matrix-addressed TN LC-TV and the Cathode Ray Tube (CRT). From this
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comparison, one can derive the video requircments. When applying the SSFLC
effect, the most significant requirements are:
a) colourless black and white switching. becausc when full colour is
synthesized by combining three primary colours, well-saturated colours
should be obtainable;
b) the linenumber of a TV display is fixed (c.g. 575 for PAL) and has a
tendency to increase in the near future (1150 for high-definition TVY);
c) due to the fact that all information must be refreshed with a frequency of
50 (PAL) or 60Hz (NTSCQ). the linc-address time is fixed (c.g. 64us for PAL);
d) the transmission in the bright statc should be maximum. cspecially because
the usc of polarized light alrcady causcs a 60°% loss of intensity:
¢) the obtainable contrast ratio must be > 100;
f) the gradation must possess >100 gray levels.
With respect to the maximum brightness requirement, one should note that
polymer-aligned SSFLC samples usually exhibit an optical switching angle
between both bistable memoryv states of ~15° (instcad of the preferred 45%) duc
to a tilt of the smectic layers towards the glass plates (chevron structure). The
result is an additional loss in brightness of ~75%. This can be avoided by a
low-frequency electrical pre-treatment that uprightens the smectic lavers'®it? or
by using a high-pretilt orientation (e.g. oblique cvaporated SiOy)."**

The gradation rcquirement is very important when considering the SSFLC
structure, as it directly contradicts the bistable character of the structurc. The
necessity of this farge amount of gray levels is illustrated in Figure 2, where a
continuous gradation image on a CRT is compared with a simulation on the same
CRT in which only 16 gray levels for cach colour arc used (i.c. 4096 different
colours).' As can be scen, contour lines are clearly visible, cspecially in arcas with
a small colour gradient. From this kind of simulations, we concluded that >100
gray levels would be required most vidco test images.

This paper will focus on the possibility of mecting the gradation requirement,
by discussing several approaches. Both discrcte gradation techniques (“dither”)
and analog gradation techniques ("multidomain™ will be discussed.

DISCRETE GRADATION

In the so-called “dither” techniques, the SSFLC pixcls arc completely switched to
the black or the white state. The gradation is introduced by increasing the
occurrences of the pixels in the black or white states. “*!5 This can bc done by
dividing each pixel into many subpixels which can be switched individually to the
black or the white state (Figure 3a) or by addressing each pixcl morc than once
within the frame refresh time (Figure 3b).
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ratios that follow a binary series 2. Thesc subpixels can be realized by a division
of both the column lines and the row lincs, although the latter should be Kept at
a minimum, because more rows means a shorter line addressing time when the
linenumber and the frame refreshing time are constant (as they are for video).
Therefore the columns should be divided according to 1-2-4-8-...(i.e. 2°-2'') and
the rows should be split into two subrows with width-ratio 1-2. The i =4 casc is
illustrated in Figure 5, yielding 256 (2?) gray levels. The division of the rows can
be replaced by a twofold time integration with an unequal division in time of
[/17th and 16/17 of the frame period. Each gray level can be realized in only one
single manner. In this way the largest amount of gray levels is obtained with the
smallest increase in complexity.!®

column

row
16

FIGURE 5 A binary subdivision is a very efficicnt way to achieve a
large number of gray levels (256) with a small incrcasc in complexity
(number of lines).

In this binary configuration, each column is divided in 4 subcolumnns and thus
the column interconrcction pitch increases (3 TV would require 20um
interconnection pitch and 10” TV 70um) and the smallest ITO detail, that has to
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be photolithographically made, decreases (3" TV nceds a 4um smallest subcolumn
and 10” TV 15um). The number of column driver ICs increases with a factor of
4. The splitting-up of the rows requires a doubling of the SSFLC switching spced
and a video frame or line storage with an incrcascd data transfer speed.

Roughly speaking, one may concludc that the realization of a large number
of gray levels using “dither” techniques in passive-matrix-addressed SSFLC
displays might be possible, especially for larger-arca displays, although it will
require a trade-off of large technological cfforts concerning: thc narrow ITO
line-width; the small interconnection pitch: the high number of driver ICs; the
high speed data transfer or the high switching spced of the FLC. Morcover, the
presence of a periodicity in the space or timc integration may be cxpected to be
noticed by the human visual system and thercfore it may causc perceptive
artefacts on the display. To avoid this. the complexity will have to be further
increased.

ANALOG GRADATION

An analog gradation in the bistable SSFLC structurc can be obtained by
employing the spontaneously-present spacc intcgration:  thc multidomain
switching behaviour. As illustrated in Figurc 6, the switching from onc state to
the other (occurring upon voltage inversion) takes place via the nucleation and
growth of domains of one of both states. In fact, it was suggested by Maltesc et
al." to modulate these multidomain structures via the pulse-width of a switching
pulse. However, to realize more than 100 gray levels, cach of which has to be
cxactly-reproducible, the nuclcation and growth of the domains is not stable
cnough: an additional control of this process is requircd. To achieve this control,
several ways have been suggested, of which the following will be discussed in the
next sections:

a) charge-controlled domain switching

b) local E-field variation

¢) local FLC threshold variation.

CHARGE-CONTROILLED DOMAIN SWITCHING

In the SSFLC structure, the clcctrical differcnce between both states lies in the
sign of the surface charge (the spontancous polarization Ps ). As reported
carlier®, an SSFLC cell can be loaded with a certain amount of charge by
impressing a voltage onto it and if the cell is clectrically isolated directly
afterwards, the SSFLC structure can switch (partiaily) to the other state. This
means that an amount of surface charge AQ = 2PsAA is transported to the other
side of the sample, which results in a compensation of the surplus charge that was




8/[362] W.J A M. HARTMANN

FIGURE 6 The multidomain switching process

put on the sample initiahy. Thc -witchcd arca A4 . and conscquently the
transmission, is thus quantitatively controllcd by thc initially impressed charge
(see Figure 7).

Q.
~ T+TT+ T+ T+ N
a1

T
4o

o
@

W

"?L ) -

AA

FIGURE 7 The charge-controlled FLC switching mechanism

When the addressing puisc width is significantly smaller than the FLC
switching time, the gray levels are, in principle, not influcnced by “kinctic” factors
like domain nucleation or growth spced or by the cell thickness. The tempcerature
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dependence is related to that of the polarization only. Figurc 8 shows the
microscopic appearance of the gray levels and the addressing scheme that was
applied. The minimum domain diameter is ~2um.

FIGURE 8 Microscopic appearance of the charge-controlled gray
levels and the addressing scheme that was applicd. The driving
parameters are set as in Figure 9.

The addressing scheme has to consist of an invariable reset pulse to obtain an
identical starting situation, shortly-afterwards followed by a variable selection
pulse which determines the multidomain gray lcvel that will be obtained. The
transmission-voltage dependence is depicted in Figure 9.

In fact, we have demonstrated a video display in 19882, based on an
active-matrix «-Si TFT array. This active matrix is nccessary because the
charge-controlled mechanism requires an clectrical insulation of the pixel, which
cannot be obtained in passive-matrix addressing. A photograph of the display is
shown in Figure 10 and some data are listed in Table I. The display is operated
in the initial chevron smectic layer configuration. The optical angle between both
“single-domain” memory states is ~15° (at Vs is 2 and 5.5V), but upon further
increasing the selection voitage to 6V or decreasing it to OV, a continuous
(non-multidomain) director shift?2 occurs, and the optical angle between these two
extreme states is ~40°. Therefore thc brightness and contrast are relatively high.
From these displays it was concluded that in principle the mechanism is able to
realize a sufficient gradation and that the video requirements can be fulfilled. In
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FIGURE 9  Transmission-voltage dependence of charge-controlled
gradation.
comparison to active-matrix-addressed TN LC-TV significant improvements arc
obtained with respect to viewing angle and switching speced.

The charge-controtled mechanism can alse be applied in other (non-SS) FLC
effects to achieve a controlled modulation. The modulation of the
“memory-capability” by means of a variablec rcsistor or capacitor?* is based on the
same mechanism.

TABLE I Active-matrix-addressed F1.C video display

array a-Si TFT (Philips Res. L.abs Redhili-UK)

alignment nylon6.6 one-side rubbed

size 2" diagonal lincs 96x108

FLC ZL13654 (Merck) thickness < 2um

drive frequency 5011z contrast ratio 100 (in pixeh
line-time 64 or 32us switching spced < 500us
drive voltages -6/ + 6V brightncss 70%

Also optically-addressed spatial light modulators (OASLM), that can be
applied in computing or imagc-intensifying, can usc this gradation principle.?' 2
The principle of operation of an OASLM is illustrated in Figurc 11: a
low-intensity image is written onto the «-Si photoconductive layer, which
transfers the information electrically to the LC layer. This image is projccted using
a high-intensity reflection set-up. Duc to its switching specd and its high capacity,
the SSFLC cffect is often suggested to be used in such an OASLM structure,
Charge-controlled gradation can be achicved when the activating low-intensity
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FIGURE 10 The active-matrix-addressed FFLC video displav, in which
the charge-controlied gradation s applied.

pulsed (low intensity) image
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FIGURE 11 OASLM device as image intensifier
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image is offered within a short time and the LC laycer is clectrically insulated
during the rest of the time. The light-pulse then acts like the drain signal of a
transistor switch.

LOCAL E-FIELD VARIATION

A uniform, bistable-switching SSFLC pixel can be provided with a controlled
locally-varying electric field, by changing the thickness of the dielectric layer(s)
or the electrode structure.

Varying capacitances
As illustrated in Figure 12, a controlled variation of the FLC laver thickness or

a controlled variation of the diclectric layers in serics with the FL.C layer will
result in a spatially-varying clectric ficld on the FLC layer within a pixel. The
amplitude of the applied voltage will then control which part of the pixel is
provided with a field larger than the threshold for switching and thus a domain
gray level will occur. These approaches have been described by rescarchers from
Matsushita,” Canon,® Sciko® and others. When considering the rcalization of
>100 reproducible gray levels, however, the thickness control of the different
layers in each pixel will have to be better than 1%.

FIGURE 12 Local E-field variation by varying the thickness of the
LC layer or by varying the thickness(cs) of the diclectric laycr(s) in scries
with the LC layer.

Yoltage gradient over pixel electrode

As illustrated in Figure 13, a voltage gradient over a pixel arca can be realized
by depositing narrow metal lines at thc edges of the pixel lines on top of a
continuous highly-resistive ITO layer. When different voltages arc applied to two
adjacent metal lines, a controlled voltage gradicnt over the high-chmic ITO is
established. When, in addition, the voltage on the countcrelectrode s varied, the
area of the pixel, on which a voltage is present that is larger than the SSFLC
threshold changes and thus a domain gradation is rcalized.? A disadvantage is
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that current is running through the high-ohmic ITO continuously. which may
cause power consumption and dissipation problems.

@__‘m_&aa»_me&&- ITO
FLC% metal
high Q ITO

N

F— -

FIGURE 13  lLocal E-field variation by using high-ohmic ITO to
obtain a controlled voltage gradient over the pixel electrode.

LOCAL FLC THRESHOLD VARIATION

in this approach it is not the local clectric ficld that is varicd, but it is the
switching behaviour of the FLC layer itsclf. As was recently reported by Verhulst
et al.,” one technique to obtain such a local variation is bascd on the different
occurring textures in SSFLC samples: the “texturc-method”. In the following
section the application of the “texturc-mcthod” to realize a video display is
described.* Therefore, attention is paid to the choice of the texture in which the
display is operated, to the addressing scheme, to the demands on the tiquid crystal
material and to the display configuration. As a start, a rcvicw of the
“texture-method” is given.

The “texture-method”

Low-frequency electric fields applicd to SSFI.C samples cause an irreversible
reorientation of the smectic layer structure.?? With increasing clectric fields, the
observed texture of the sample changes from the initial virgin texture (texture I;
Figure [4a), via a rather inhomogencous roof-typc texture (texture I, Figure
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14b), to a more uniform striped texture (texture 111, Figure 14c).’s These textures
are interpreted as being the result of an uprightening of the chevron smectic layer
structure to one with a smaller tilt towards the substrate normal. Theoretically,
a smaller smectic layer tilt results in a larger optical angle between the planar
memory states and due to the longer switching path on the smcctic C cone, the
threshold voltage increases.

(a) (b) (c)

FIGURE 14 Micrographs of the various textures in an SSFLC sample:
texture [ (a), II (b) and Il (c). The arrows indicate the rubbing
direction.

It was verified by small-spot optical measurements that the uprightening of
the smectic layers occurs in a locally-distributed way and thus a distribution of
the threshold voltage arises.” Texture 1 possesscs a uniform chevron smectic layer
structure with a constant layer tilt o towards the substratc normal. Texture Il
comprises a broad range of smectic layer tilts varying from Jo to a lower value.
We assume that in texture Ul the range of layer tilts converges again, but now
tewards the lower value.

The integrated transmission-voltage curve (obtained by applying an
addressing scheme as described in the next paragraph). which is measured with a
pixel-size spot, exhibits the familiar bistable discontinuous behaviour in texture I
and changes to a slanting curve in texture II, which again bccomes steeper in
texture lII (see Figurc 15). The slanting curves in texture Il and Ill make an
analogue gradation possible. The effective switching angle between the two
memory states in texture I is approximately 12°; the avcraged value in texture I
usually lies between 20 and 35° and in texture I11 it can bc 32 to 45°. This explains
the difference in maximum transmission of the three curves.'

The (domain) gradation is now controllcd by the texturc and not by the
domain nucleation and growth kinetics (as in texture I ' ). The uniformity of
the texture can be controlled by the concentration and positioning of the cell
spacers. Because both the reorientation electric field and the switching electric
field depend on the thickness of the FLC laver, a compensation of thickness
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FIGURE 15 Transmission-voltage curves obtaincd on the different
textures, measured with the addressing scheme of Figure 16.
variation occurs, giving this gradation method some tolerancc to cell gap
variation.

Addressing scheme
A preferred addressing scheme for SSFLC video displays* is depicied in Figure

16. The typical repetition rate is 50Hz (PAL-video) and the available line-time is
128us (half-resolution), 64us (full-resolution) or 32us (high-dcfinition). All drive
voltages are bipolar to ensure that no DC clectric ficlds occur which may degrade
the liquid crystal material. Therefore, the available timc for switching is only
50% of the line-time (2-slot scheme).

The rows are sequentially selected by a bipolar pulse with amplitude Vs.
Immediately before selection, a reset is performed by a broad bipolar pulse with
amplitude V. This reset assures that an identical starting situation (preferably the
black state) is obtained before a gray level is written, which is necessary to obtain
a reproducible gradation.!%! The reset takes two line-times (or morc), meaning
that the row drivers have to address at least threc rows simultancously. The gray
level is determined by a hipolar column pulse with a variable amplitude Fp, which
modulates the effective pixel voltage during sclection. The amplitude of the pixel
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row
- 0 — .
n-1 reset selection
Vs
n 0d-t- Vr2 Vg '*VstVd
(select) [
. tVd
n+1 : --'_-hr-b—°
=] [
n+2 »‘j -Vs = Vy l
n+3 o — line-time —

-

line-time

column

FIGURE 16 Addressing scheme to cnable passive-matrix-addressed
gradation in SSFLC displays by amplitudc modulation: row signal,
column signal and resulting pixel voltage.

voltage in the second half of the selcction linc-time (the switching pulse
—Vs+ Vp) determines the amount of switched area starting from the reset
situation, thus the gray level. Electronically, it is preferred to address such a large
amount of gray levels by amplitude modulation, rather than time (phase-shift)
modulation. Because the reset pulses are of double width, their voltage-time
product is not influenced by Vp and the resct is not affected. Due to the bipolar
nature of the column signal, the response to these pulscs during non-selection (i.c.
crosstalk) only appears as an oscillation in transmission intensity and hardly
changes the mean value of the gray level. High-frequency ac-stabilisation?’ is not
applied, because it would bring about an unnccessary increase of the power
consumption of the display driving. The scttings of the drive voltages depend on
the transmission-voltage curves as given in Figurc 15, according to:

Va2 Vsar  Vs= 1AV + Vrpr)

0<|Vpl< Y2AVsqr - Viyr)
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and thus during selection
Vrur < Veixer < Vsar

Texture 11 or texture ]I

Figure 17 depicts the actual transmission vs. time recordings of an SSFLC samplc
to which this addressing schemc is applicd (V,,=0). The gray lcvels, obtaincd by
varying Vs from 9 to 12V (64us linc-time), appear to be quite stable. The inset
shows the transmission responsc when data pulses (¥p=+2V) arc applicd during
non-selection: the crosstalk. To obtain a high contrast ratio, the crosstalk (in the

black state) should be as small as possiblc.

Twne [ms] —»

| /1’“’—2*—:1
—
—

-+—— fransmission

0.75

Vy=0

FIGURE 17 Transmission vs. time rccordings of different gray levels.
The inset shows the (magnified) response when data pulses are applied.

Obviously, texture I has the advantage of a stecper transmission-voltage
curve (see Figure 15), thus the maximum bias V,/Fe is lower. Additionally,
texture 111 exhibits a smaller responsc to Vp than texture II, because the director
position is located closer to the side of the smectic C cone.'® Thes~ two factors
will lead to a much smaller crosstalk in texturc I1I than in texturc Il.

In fact, Figure 18 depicts the measurcd contrast ratio under actual driving
conditions (including the maximum-required Vp) as a function of the effective
optical switching angle. It can be scen that the contrast ratio in texturce Il only
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FIGURE 18 Contrast ratio under a ‘worst-casc’ addressing condition
(maximum crosstalk) vs. tcxture.

reaches values like 20, whereas it amounts to 200 in texturc [11. Therefore, texture
Il is strongly preferred. A disadvantage of texture 111 lics in the somewhat higher
puise amplitudes. Microscopically, the gray levels in texture [Il appear as in
Figure 19.

Ferroelectric liquid crystal material

Several FLC mixtures have been tested for this application. Provided that a good
orientation is obtained in texture I, most of them exhibit the abovementioned
behaviour in the subsequent textures. To carry out the chevron reot sntation, the
value of the spontaneous polarization should not be too low.!022 A high switching
speed is required because the necessary pulse amplitudes increase in the
subsequent textures. Table Il presents some results on materials from Merck
(ZLI), BDH, Hoechst (Felix) and Chisso (CS). The value ¥, dcnotes the
amplitude of a 25Hz square wave voltage at which the irreversible reorientation
to texture HI occurs' and can therefore be used as an indication of the chevron
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FIGURE 19 Micrographs of the gray levels in texture 1

(373)19

reorientability. In texture I11 (with an effective switching angle =35°) the values
Vrur and Vsur are obtained using the drive scheme of Figure 16. Those materials,
which require the lowest Vryug and Vs,r (Felix T108 and CS1031), are preferably
used. For the application, it is preferred to use C-MOS driver ICs, meaning that
the required voltages should not exceed +20V. As can be scen, mixture CS1031
can be operated in full-resolution video drive (32us switching-pulse width) with
moderate drive voltages.

At the moment, high-definition driving (16us pulsc
width) requires elevated temperatures.

TABLE Il FLC mixtures in texture 111

Material Ps Vin Vrur Vsar

Z113654 29 24 25 35

ZL14237/000 7 a4? 60

71.14237/050 13 28 27 38

ZL14237/100 20 23 16 25

Merck90964 38 10 12 18

BDIH866 28 12 14 21

Felix T95 43 20 20 30

Felix T103 46 15 10 (17H)* 15 (259

Felix